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Abstract

Principal Component Analysis (PCA) is an important methodology to
reduce and extract meaningful signals from large data-sets.
Financial markets introduce time and non stationarity aspects, where
applying standard PCA methods may not give stable results. We
propose robust rolling PCA (R2-PCA) that accommodates the
additional aspects and mitigates commonly found obstacles
Including eigenvector sign flipping, and managing multiple
dimensions of the data-set. This makes R2-PCA an ideal candidate
for learning-based models.

Eigenvector Sign Flipping

Eigenvector problems with the unit vector constraint typically yield
more than one solution when decomposing a symmetric covariance
matrices; effectively each eigenvector can be multiplied by -1 and
still satisfy the constraints. Computer based PCA solvers choose the
eigenvector in the direction of the data. If the direction of the data
switches over time (a common occurrence in financial time series
especially if the data is normalized), this can lead to the projected
data jumping between time increments. This will drastically reduce
the accuracy of reduced data to its original counterpart.
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R2-PCA Algorithm

Algorithm 1 R2-PCA Algorithm

1: Choose an number of Principal Components p

2: Choose a dataset X with dimensions (F,T, D)

3: Choose a rolling window length W

4: Choose w as set of all time increments up to time ¢ with |w| = W

5. Set time ¢ = 1 and rolling window w; = {t,t—1,....t—W+1}

6: Compute the covariance matrix C'y for each element /asset in f € w;,

> (Funds, Time, Features)

> If data exists for £ < 1, else w; = {1}

7: Compute average covariance matrix C' = ﬁ >, Ci

8: Eigendecompose (' = PAPT and extract eigenvectors Vi, = {v1,...0p }u,
9: fort =2,...,T do

10: Set rolling window w; = {t,t—1, ..., t—W+1}

11: Compute the covariance matrix C for each element /asset f € w;

12: Compute average covariance matrix C' = ﬁ > Ci

13: Figendecompose C' = PAPT and extract eigenvectors V,,, = {v1, ..., Up }u,

14: fori:=1,...,p do

15: Set 7 = argmax(h':!_,! -V, 1) P Find eigenvector with highest absolute similarity score for ordering
16: if v, -vl, <0 then > Eigenvectors from current and previous rolling windows with ||v|| =1
17: Set vi, = —uv}, > Sign Flip
18: end if

19: end for

20: Reorder Vi, = {v1, ..., Up }w, from each argmax j result > Data can be projected using V,,, after this step
21: end for
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Cosine Similarity Score

To fix eigenvector flipping issue, the cosine similarity measure (dot
product in most cases) Is used to related the eigenvectors from
different periods. Should an eigenvector flip between time
Increments, the similarity score will drop to a value below 0 and the
eigenvector can be unflipped by multiplying it by -1.

Cosine Similarities for PCA
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Features of R2-PCA Model

« Variable Number of Dataset Features: R2-PCA can be used on
datasets with a variable number of features over time by
computing the cosine similarity of only the shared features
between time periods

 Reordering of Principal Components: Cosine similarity can be
computed across all eigenvectors in different time increments and
compared. By taking the largest absolute value of the cosine
similarity, we can reorder the principal components based on the
magnitude of variation from the previous time increment

* Incorporating More Dimensions: Time series datasets with
additional dimensions can utilize the R2-PCA algorithm by
averaging the covariance matrix at each time increment. The
datasets used for this analysis had the additional dimension of
funds, thus the covariance at each time increment was computed
by averaging the covariance for each fund.

« Covariance Stability: The R2-PCA Model was specifically
designed to handle financial time series datasets where the
covariance matrix may significantly change due to the effects of
market shocks and other regime dependent effects. A covariance
Instability back test was used to stress test R2-PCA and other
PCA models. The results of these tests can be found in the
SSRN Paper QR code and the Animations QR code link.
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R2-PCA Results
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The results above depict R2-PCA and PCA run on the entire dataset
at one time. This gives a good idea as to what the shape of data
should be if the future results of the market are known in the present.
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R2-PCA Cosine Similarity Results
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